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ABSTRACT

1 INTRODUCTION
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We present an algorithm that reconstructs a three-
dimensional surface model from an image. The image is
generated by illuminating a specularly reflective surface with
a pattern of light. We discuss the application of this algo-
rithm to an important problem in biomedicine, namely the
measurement of the human cornea, although the algorithm
is also applicable elsewhere. The distinction between this re-
construction technique and more traditional techniques that
use light patterns is that the image is formed by re-
flection. Therefore, the reconstruction algorithm fits a sur-
face to a set of normals rather than to a set of positions.
Furthermore, the normals do not have prescribed surface
positions. We show that small surface details can be recov-
ered more accurately using this approach. The results of
the algorithm are used in an interactive visualization of the
cornea.

I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling; J.6 [Computer-Aided
Engineering]: Computer-Aided Design.

Surface reconstruction, videokeratography,
corneal modeling, photogrammetry, normal fitting.

A problem of particular interest to the computer graphics
community is how to construct accurate computer mod-
els of existing objects. One use of these reverse-engineered
models is to populate rendered scenes with realistic objects.
Another important use is for computer-aided visualization,
where the models are displayed in ways that expose informa-
tion for analysis. An example is medical imaging, in which
models of a patient’s anatomy are first extracted from mea-
surements made by a variety of scanners (for example MRI
or ultrasound [7]). The models are then displayed in vari-
•

•

•

•

ous forms for diagnosis. The success of this approach has
made medical imaging one of the more important applica-
tions of computer graphics and modeling. In addition to
displaying the reconstructed models, they can be used to
provide a valuable starting point for other operations. For
example, in the area of computer-aided design (CAD), an
architect can input a model of an existing building, then
design and visualize modifications by editing the existing
structure. Reverse-engineering is also studied in disciplines
other than computer graphics and modeling. For example,
in the machine vision community, it appears under the guise
of automatic object recognition.

This paper presents a solution to an important reverse-
engineering problem in biomedicine: constructing a com-
puter model of the human cornea. The cornea is the outer
layer of the eye, and plays the primary role in focusing im-
ages on the retina. The algorithm that we have devised to
construct a model of the cornea is of interest to the graphics
community for the following reasons:

We derive the surface model by applying backward ray-
tracing to simulate reflection at a specular surface and
the resulting virtual image.

We use a variation on the standard B-spline surface
representation to increase the efficiency of the backward
ray-tracing by at least an order of magnitude.

We solve a problem of fitting a surface to a set of nor-
mals at unprescribed locations.

The algorithm we present here has significantly ad-
vanced the frontier of corneal modeling and visualiza-
tion.

Building a model of a physical object usually proceeds
in two stages: data capture, and construction of the model
from the data. Data capture takes many forms. For a survey
of techniques, the reader is referred to [6, 14]. A common
technique uses correspondences between two or more images
of an object taken from different positions [5]. Stereopsis or
depth disparity allows the recovery of an approximate depth
map for the object. Depth is also recovered by a different
class of techniques that use structured light. In this ap-
proach, the object is illuminated with a pattern to form an
image. The geometric relationship between the light source,
the object, and the image recording device is sufficient to
determine depth. In some cases, estimates of surface orien-
tation are also provided. Examples include laser rangefind-
ers, slit-ray or grid projectors, and Moiré pattern generators
[1, 22, 26].

In most cases, the data is returned as samples of surface
position. A model is built by fitting the captured positional
data with a surface [8, 11, 12, 20, 21, 23]. Problems faced
at this stage include surface discontinuities, and noisy or
missing data. Terzopoulos [25] presents a robust algorithm
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Figure 1: Cross-section of the eye.

which handles these problems using a multigrid approach.
In [24], the model is built from implicit algebraic surfaces.
The problem of joining positional data taken from differ-
ent measurements is addressed in [27]. Hoppe [13] discusses
an algorithm for recovering surfaces with complex topology
from range data.

The important distinction between these fitting problems
and the one presented in this paper is that we measure sur-
face rather than surface position. This presents
a number of interesting challenges and leads to a new ap-
proach to surface fitting. The problem differs from those
faced by the vision community (such as shape-from-shading
[5]) in that we rely on the specular reflection of illumina-
tion at the surface in order to reconstruct very small surface
features.

As shown in Figure 1, the cornea is the transparent tissue
that forms the foremost surface of the eye. Refraction at
the air/cornea interface accounts for approximately three-
quarters of the focusing power of the eye. Consequently, the
exact shape of the cornea is critical to visual acuity. Even
subtle deviations of corneal shape can have a significant im-
pact on vision. Measurements must be at the level of submi-
crons to be meaningful. It is the high precision needed for the
measurements that leads us to measure corneal orientation
rather than position, and that makes surface reconstruction
a challenging problem.

Vision problems arise when the cornea is asymmetric or
is too peaked or flat to focus light uniformly on the retina.
Eyeglasses and contact lenses address the problem by pre-
refracting the light so that the overall effect of the correc-
tive lens plus cornea is more uniform. Recent surgical tech-
niques change the degree of refraction by adjusting the shape
of the cornea directly. (RK) and

(AK) reduce the curvature of the cornea
by weakening the structure with radial cuts;

(PRK) and (LASIK)
achieve a similar result by ablating corneal material with an
excimer laser.

All these procedures benefit from having accurate models
of corneal shape. Until recently, however, models used in
the optometric community have assumed that the cornea is
spherical, ellipsoidal, toric (like a section cut from a torus),
or has radial symmetry. On a gross scale, most corneas do
have these smooth shapes. However, we wish to measure,
and model, deviations from these simple shapes that are on
the order of microns and that contribute significantly to the
refractive power of the surface.

Ideally, we would like to have an algorithm that, in clinical
practice, can scan a patient’s cornea and display usable re-
sults almost immediately. We have developed an interactive
program that presents a good approximation to the shape
of a patient’s cornea within seconds, and then continues to
refine the display until micron accuracy is achieved.
2 MEASURING SURFACE SHAPE

2.1 Videokeratography

raster photogrammetry

videokeratograph

Depth from binocular disparity does not work well for mea-
suring corneal shape, since the surface has no distinctive
variation in texture. This makes it difficult to identify corre-
spondences between multiple images. Therefore, we consider
measurement techniques in which the surface is illuminated
by a pattern of light. The resulting image is recorded by a
scanner such as a CCD array. There are two ways to ap-
ply this technique, which we will refer to as approach A and
approach B.

Applications of approach A are more typical. Often re-
ferred to as , they require a pattern
of one or more lines to be projected along a known direction
onto a diffuse surface [4, 27, 30]. The projected pattern acts
as a secondary diffuse source, which is viewed by the scan-
ner along a direction off-axis to the direction of projection.
The observed distortion of the lines indicates the variation in
surface distance from the projector, and fully determines the
position of a set of sample points. This approach is used, for
example, by the Cyberware laser scanner [27]. Lately, in-
terest has focused on fitting the data points with surface
models, and combining the results from multiple scans [27].

The approach taken by applications of type Bis for a spec-
ular surface, rather than diffuse, near a diffusely emitting
source pattern. The scanner captures the virtual image of
the pattern caused by specular reflection at the surface. As
with approach A, the shape of the surface affects the scanned
image. However, the relationship between the shape and the
image is harder to define, as it now depends on surface ori-
entation as well as position.

One advantage of approach B is that very small devia-
tions in surface orientation cause large changes in the im-
age. There is no such magnification possible in approach
A — a change in orientation has no effect on the scanned
image, and a change in position causes changes only of the
same magnitude. The accuracy is therefore limited by the
resolution of the scanning device. We believe that, with a
good reconstruction algorithm, approach B allows submi-
cron level detail to be recovered. This paper describes such
a reconstruction algorithm.

Fortunately, the cornea in its normal state is covered by a
thin layer of tears and presents a specular surface. This
means that we can conveniently image the surface us-
ing approach B. Over the last few years, simple observa-
tion devices based on this approach and used in the op-
tometric community have evolved into the
[15, 16, 19, 29, 31]. This instrument contains a video camera
to capture a digital image which is analyzed by an on-board
computer. Although there are variations among systems, a
standard arrangement is to have the source pattern painted
on the inner surface of a cone. The cone has a hole in its apex
through which a system of lenses and a CCD array capture
the reflected image (Figure 2). The most common source
pattern is alternating black and white concentric rings. Re-
cently, however, we have been experimenting with a proto-
type source pattern, not commercially available, that resem-
bles a dartboard. We show later how such a pattern allows
a more accurate reconstruction.

In preparation for measurement, the patient’s line of sight
is aligned with the axis of the cone and the image is brought
into focus. After capturing an image (Figure 3), the video-
keratograph performs a processing step to locate prominent
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3 RECONSTRUCTION ALGORITHM

For our purposes, the action of a camera with one or more
lenses is adequately modeled by a pinhole camera positioned at
the nodal point

Figure 2: Videokeratograph.

Figure 3: Captured videokeratograph image.

image features. The nature of these features varies between
source patterns. For both the concentric ring and the dart-
board sources, the feature set includes the edges between
regions of black and white in the image. These edges are
located with standard image processing techniques and are
discretely sampled. For the dartboard source, the crossings
created by the junction of four black and white patches form
an additional feature set. The aim of our reconstruction al-
gorithm is to generate a model of the corneal surface from
the image feature positions and the geometry of the video-
keratograph. Previous algorithms have failed to recover con-
tinuous, accurate surface models [4, 10, 15, 16, 28, 30]. Our
algorithm satisfies these goals.

The reconstruction algorithm inputs a set of feature samples
from a videokeratograph image. The goal is to find a surface
that, if placed in the videokeratograph, would create the
same image. With certain assumptions and constraints, we
claim that this surface is a good fit to the original cornea.

In order to find the surface, we use a simulation of the
videokeratograph. As explained in Section 2.1, light from
the source pattern is reflected at the corneal surface and
gathered by a system of lenses to form the videokeratograph
image. We simulate this process by backward ray-tracing,
as illustrated in Figure 4. In the simulation, the system
of lenses is replaced by its equivalent nodal point , which
becomes the center of projection. The video CCD array
becomes the image plane, with which we associate the coor-
dinate system ( )

In Section 2.1, we noted that image processing techniques
are used to extract features such as edges and crossings from
the videokeratograph image. The positions of these features
in ( ) are sampled to form the set : = 1 . Our
algorithm relies on the fact that features in the image cor-
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3.1 The Normal Fitting Phase

Figure 4: Simulation using ray-tracing.

respond to features in the source. For example, a sample
point taken from an edge in the image is the reflection of
some point on an edge in the source. If we trace a ray from
the sample point on the image to the surface (through the
nodal point) we can identify a ray that goes from the surface
to the “correct” point on the source (that is, some point on
the corresponding source feature). In Figure 4, this second
ray is shown as a dashed line. These two rays — the inci-

dent ray ˆ and the modified reflected ray ˆ , where the hat
indicates normalization — define a modified surface normal
vector:

ˆ =
ˆ ˆ

ˆ ˆ

The modified reflected ray and the modified normal vector
may differ from the actual reflected vector ˆ and the actual
normal vector ˆ . In this case, we attempt to adjust the
surface so that it interpolates the modified normal.

We determine a modified normal vector for each image
sample and fit the set of normals with a new surface. Be-
cause the backward rays intersect the new surface at new
positions, the set of modified normals we just fit is now in-
correct, so we must recompute them and repeat the fitting
step. This leads to an iterative process which we initialize
by taking a guess at the shape of the cornea. Each iter-
ation consists of a phase and a

. The normal fitting phase determines the set of mod-
ified normals using the current surface and fits them with a
new surface. The refinement phase adds degrees of freedom
to the surface model as needed for a more accurate fit.

For each sample , we determine the modified normal ˆ
using the current surface. We define the of to be
the set of points in the source pattern that could be imaged
to . This set may form a curve, such as the entire source
edge in the above example, or it may contain a single point.
The latter case arises when the dartboard pattern is used,
because crossings can be located exactly in the source.

Using backward ray-tracing from and the current sur-
face, we find where the reflected ray ˆ intersects the source
pattern. We then determine which point in the range lies
nearest the intersection. The ray from the surface to this
point is ˆ .

The set ˆ : = 1 is viewed as a set of normal vec-
tor constraints which, together with a positional constraint
discussed in the next section, is fit with a new surface .
The details are given in Section 3.4 after we have described
the surface representation scheme.
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3.2 Convergence and Uniqueness of Solution

3.3 Surface Representation
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The search process clearly must be iterative, since each nor-
mal fitting phase changes not only the normal vectors of the
surface but the position, which causes the rays from the im-
age plane to intersect at new locations. We have no formal
proof that our search algorithm will always converge, but in
all trial runs we have observed rapid and stable convergence
to a good solution.

For a given set of features, there may be zero, one, or many
surfaces that generate matching images. The result depends
on the distribution of image features and the representation
chosen for the surface model. Fortunately, we are working in
a restricted problem domain, in which we can assume that
the cornea has a smooth, regular shape. This assumption is
based on the fact that the cornea is a pliable tissue subject
to internal pressure. Based on this assumption, we formu-
late the search process to favor smoothly varying surfaces.
With the further assumption that the number of degrees of
freedom in the surface model is related to its smoothness, we
begin the search with a surface of few degrees of freedom,
and incrementally add degrees of freedom until a satisfactory
solution is found.

Although this algorithm may not be a rigorous statement
of our goal, it has given more than satisfactory results in
practice. Note that we use far more features than degrees of
freedom, so that the search for a match is overconstrained.

Section 3.5 will discuss efficient methods for adding de-
grees of freedom to the model using refinement.

To further reduce the number of possible solutions, we im-
pose one or more interpolation constraints. The constraint
that we use most often is to fix the position of the apex
of the cornea. Some videokeratograph systems have attach-
ments that can directly measure this position. If the infor-
mation is not directly available, it can be estimated from the
image and the known focal length of the camera lens. The
algorithm then generates an initial surface that interpolates
this point, and maintains the interpolation constraint for the
remainder of the search.

The representation of is carefully chosen to allow the effi-
cient execution of the normal fitting phase. At first glance,
conventional CAGD wisdom would suggest the use of a para-
metric polynomial patch scheme — such as tensor product
B-splines with control points in IR — to define the posi-
tion of in ( ). One drawback of this scheme is that
numerically expensive algorithms such as root finding are re-
quired to compute the ray/surface intersections during the
backward ray-tracing stage.

In contrast, we use a representation scheme that allows
the point of intersection of a ray to be determined simply by
taking a linear combination of scalar control points. Further-
more, the coefficients of the linear combination remain con-
stant throughout the search, and are computed only once,
at initialization.

Figure 5 illustrates how the scheme works. By suitably
scaling the feature positions , we can assume that the image
plane lies at = 1 and that We define ( )
to be the -coordinate of the point of intersection between
the surface and the ray that originates at ( ) and passes
through the nodal point. The coordinates of this point are

= ( ) (1)
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Figure 5: Surface representation scheme.

These equations define the surface in ( ), parameter-
ized by image plane coordinates ( ). Furthermore, the
representation is ideal for the backward ray-tracing task,
since, by definition, the equations directly give the inter-
section of each ray with .

In the current implementation, ( ) is represented by
a set of biquintic tensor product B-spline patches, with uni-
form knot spacing and no boundary conditions [3]. A surface
consisting of ( 5) ( 5) patches is defined by an
array of control points in IR From the
definition of ( ), we find that the -coordinate patches
of are degree 6 polynomials in and degree 5 in ; the
-coordinate patches are degree 5 in and degree 6 in ;

and the -coordinate patches are degree 5 in both and .
The surface can be rendered using standard techniques for
polynomial patch surfaces.

We have chosen to use biquintic patches rather than a
lower degree representation because of the high degree of
smoothness exhibited by the cornea. Furthermore, one of
our scientific visualization tasks is to display curvature maps
of the surface. Since the formula for curvature involves sec-
ond partial derivatives of surface position, a bicubic repre-
sentation allows cusps in curvature, whereas a biquintic for-
mulation provides for smoother joins at patch boundaries.

Since the feature positions : = 1 are defined by
the input image, their ( ) coordinates, which are used as
ray origins for backward ray-tracing, remain fixed through-
out the search. For fixed ( ), the functions given
by (1)–(3) are linear combinations of the control points

. This is a consequence of the B-spline func-
tion ( ) being linear in for fixed ( ).
For each of the features, we can evaluate the basis func-
tions of ( ) at the feature’s coordinate and multiply by

(for ) or (for ) to find the coefficients that multi-
ply each of the control points. Collecting these coefficients
together in matrix form, we can write

= [ ]

= [ ]

= [ ]

where and are matrices that are pre-
computed and stored using a sparse matrix representation
for efficient evaluation.

Similarly, we derive matrices and such
that = [ ] and =

[ ] Together with matrices ,
and for and , these are used to find expressions for
the surface tangent vectors in the and directions:

= ( )

= ( )

where ( ) = [ ( ) ( ) ( )]

The surface normal required for computing the reflected ray
during ray-tracing is given by
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In Section 3.1, the normal fitting problem was defined as
finding the surface that fits the prescribed surface nor-
mals ˆ : = 1 subject to one or more interpolation
constraints.

Let ( ) be a point interpolated by the surface. Us-
ing (1)–(3), we find that the constraint is satisfied if

( ) =

Using the same technique employed to construct the ma-
trix in the previous section, we determine coefficients

such that

( ) = [ ][ ] =

This constraint equation is linear in the control points, and
some number, say , of interpolation constraints are ex-
pressed in matrix form as

[ ] = [ ]

where is an matrix.
Let be the matrix whose columns span the null

space of Given an input surface with control points
that satisfies the constraints, all other sur-

faces that satisfy the constraints, and hence are possible
solutions to the normal fitting problem, have control points
given by

[ ] = [ ] + [ ] (4)

Now consider a feature with image plane coordinates
( ) The modified surface normal computed for this fea-
ture is ˆ = ( ). We can require to have a
scalar multiple of this normal by using the pair of constraints

ˆ = 0

and ˆ = 0

Using the matrices from the previous section, and defining
( ) to be the matrix with on

the diagonal and zeroes elsewhere, we write the pairs of con-
straints for all features as

( ) + ( ) +

( ) [ ] = 0

( ) + ( ) +

( ) [ ] = 0

These normal constraint equations are combined to form the
simpler expression

[ ] = 0 (5)

Substituting (4) into (5), we arrive at a system of linear equa-
tions which is solved in a least squares sense for [ ] :

[ ] = [ ] (6)

The final control points [ ] of the new surface
are determined by substitution of [ ] into (4).

The matrix in (6) has the same number of rows
as there are image features, and the number of columns is no
more than the number of surface control points minus one.
To ensure a sensible fit to the data, we overconstrain the
3.5 Refinement

4 RESULTS

MN
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, , , . . .

system by using as many as 20 to 30 times as many features
as control points. This is an attempt to smooth out errors
in the feature location process. The least squares solution
to the resulting rectangular system is found with standard
numerical algorithms. In the current implementation, the
sparsity of is not used to advantage.

The goal of our interactive system is to rapidly display an
initial, approximate solution which is then improved incre-
mentally. Therefore, the initial search iterations should exe-
cute quickly at the expense of accuracy. Since each iteration
is dominated by the solution of (6), this goal is satisfied
by performing the initial iterations with a small number of
control points and features. Accuracy is improved at the ex-
pense of iteration time by increasing the number of control
points and features, which is consistent with the algorithm
discussed in Section 3.2 in regard to uniqueness of solution.

In our current implementation, which uses biquintic B-
spline patches with uniform knot spacing, the number of
control points is increased by subdividing each patch into
four subpatches. A new knot is inserted at the midpoint of
each knot interval in both and The new control points
are derived using simple linear combinations of the old, with
coefficients given by an application of the Oslo algorithm
[3, 9].

The search begins with a single patch model of the surface.
Refinement is performed when the mean change in angle
between normals at successive iterations falls below a given
threshold. The model moves through representations using
(4 16 64 ) patches until the maximum change in normal
falls below a predetermined threshold at a predetermined
level of refinement.

A typical feature set contains over 5000 samples. For low
subdivision levels, this is more than we need, so a subset of
features is used. This subset is chosen so that the image is
uniformly sampled.

To test the algorithm, we need to run it on surfaces whose
shape is accurately known. Unfortunately, it is difficult to
manufacture interesting test cases. For this reason, we have
tested the algorithm on both data collected from real ob-
jects and data generated synthetically. The synthetic data
is generated automatically from various surface definitions
by a software simulation of the videokeratograph.

Figures 9a-10d show some frames illustrating the progress
of the algorithm. The results of the search process are dis-
played to the user after each iteration. The algorithm is
formulated so that a good approximation to the final answer
is reached in a few seconds, so the user can start analyzing
the results immediately. A more accurate picture evolves
over the next few minutes.

In Figure 9, there are four frames showing the patches
converging to a solution. The input data is a simple ellip-
soid with axis radii of 8mm, 9mm, and 10mm. The im-
age data for this example was synthetically generated and
is shown in Figure 6. For illustration purposes, we show
the exact ellipsoid (lower surface) plus the current solution
offset above. However, since the difference in shape is so
small, we magnify this difference by a factor of 20 in order
to better visualize the progress of the algorithm. The sur-
face colors indicate the logarithm (base 10) of the distance in
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millimeters between the current solution and the exact ellip-
soid. In the final frame, we can see that good convergence
has been achieved. We measure the error as the distance
in between the two surfaces, computed at a large number
of sample points in the plane. The RMS error for this
example was 9 2 10 mm, which is 0.0092 microns. This
extremely high accuracy is typical of all synthetic data sets
we have tried.

Figure 10 shows frames from another run of the algorithm.
The input data in this example is again synthetically gener-
ated, and is shown in Figure 7. The aim here is to simulate

, which is a condition in which the cornea has a
local region of high curvature [2, 17, 18]. The surface is gen-
erated from a sphere with a rotationally symmetric bump
grafted onto it. The bump and the sphere meet with curva-
ture continuity. The curvature at the peak of the bump is
significantly greater than the curvature of the sphere. This
situation has not been handled very well by existing algo-
rithms. Our algorithm, however, has no difficulty in finding
an accurate solution. Note that the bump rises only approx-
imately 20 microns above the sphere. This is a deviation of
about 0.2 percent of the radius of the sphere. However, the
bump causes large deviations in the image rings (Figure 7),
demonstrating that we can record smaller deviations using
an image formed by specular reflection than one formed by
diffuse reflection.

Rather than color encode the distance between the current
solution and the actual surface, in Figure 10 we have color
encoded the separation between the current surface and a
sphere whose radius is the same as that of the input test
surface. This form of rendering illustrates one of our visual-
ization techniques, which is to display the surface separation
from a best-fitting ellipsoid. This enhances the deviations so
that the bump, which is positionally very close to the sphere,
becomes noticeable. In this example, we get extremely high
positional accuracy of 0.013 microns.

Figure 8 illustrates the results of the algorithm run on real
data taken from a cornea. In this case, we cannot report
accuracy information because the true shape is unknown.
Nonetheless, we can render it with our in-house scientific
visualization software package. Figure 8 shows the surface
with pseudo-color representing Gaussian curvature (and the
height information in the image is simply the true height of
the 3-D surface). The red area on the left depicts a local
area of high Gaussian curvature. The vectors correspond
to the direction of minimum curvature at each point on the
surface. This image demonstrates how effective the use of
curvature can be in conveying subtle changes in shape.

We have run the algorithm on real data measured from
physical ellipsoids of known radii. In these runs, the final
accuracy lies in a range of 0.9-1.5 microns of mean error
in This is still extremely accurate, but it is significantly
larger than the error in the synthetic runs. We conclude
that the error is introduced, not by the algorithm, but by
the feature extraction algorithm and in the measurements we
have made of the physical videokeratograph geometry (such
as distance between rings, etc.). We are currently addressing
these issues.

In all these runs, the final surface consists of 8 8 patches.
This gives adequate accuracy, although there is no reason
why we cannot go to the next level of 16 16 patches. Beyond
that, we reach the limits of the feature sampling process.
In the source patterns we currently use, the features are
not uniformly spread across the image but are concentrated
along boundaries between areas of black and white rings.
This limits how small the patches can be, because if a patch
5 CONCLUSION
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falls between feature clusters it will be unconstrained (except
by continuity between adjacent patches).

We have presented an algorithm that reconstructs the shape
of the cornea from a single videokeratograph image. The al-
gorithm is interesting because it fits a surface to a set of nor-
mals rather than to a set of positions. Furthermore, the nor-
mals are not associated with spatial positions as in standard
normal fitting problems. This distinguishes it from more
typical surface reconstruction problems. The normal fitting
is necessary because the surface imaging technique uses re-
flection from a specular surface. This improves its ability to
detect small variations in surface position because surface
orientation is a more sensitive indicator of shape variations
than is surface position. This technique can be applied to
objects other than the human cornea, and any applications
that require high accuracy would be candidates. However,
we have made some assumptions about the surface that al-
low us to proceed with little direct information about the
corneal position. For example, we only require a single posi-
tional constraint. These assumptions are valid in the case of
corneas. For other more general objects where these assump-
tions could not be made, more positional measurements may
be needed to provide additional constraints.
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Figure 6: Synthetic ellipsoid
image.

Figure 7: Synthetic “bump
on sphere” image.

Figure 8: Visualization in 3D of surface recovered from real
data.


